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ABSTRACT

The notion of genus, applied to finitely generated nilpotent groups or to
nilpotent spaces of finite type, was introduced by Mislin; he and the author
showed how to introduce the structure of a finite abelian group into the genus if
the group N has finite commutator subgroup. An example is given of a
complete genus Ny, N,,..., N,_,, which constitute a cyclic group generated by
N,, with the additional property that each N, embeds in its successor as a
normal subgroup with quotient cyclic of order ! ; of course, N,_, embeds in N,.
The construction leads to the description of a family of nilpotent spaces
Xo. X1,- .., X, -y, all in the same genus, no two of the same homotopy type, such
that each X, covers its successor as a cyclic [-sheeted regular covering; of
course, X,_, covers X,. Here p isa prime, n =1, and s = p""'(p — 1)/2, while {
is semiprimitive module p".

0. Introduction

The notion of genus, applied to finitely generated nilpotent groups or to
nilpotent spaces of finite type, was introduced by Mislin (see [4, 3]). Thus two
finitely generated nilpotent groups N and M belong to the same genus if and
only if, for each prime p, the localizations N, and M, are isomorphic; and a
similar definition holds for nilpotent spaces of finite type. Strictly speaking, the
genus should be regarded as consisting of isomorphism classes of groups or
homotopy types of spaces. The detailed definitions may be found in {3].

In [4], Mislin showed how to calculate the order of the genus set of a nilpotent
group N in the case that N has finite commutator subgroup, and this work was
further developed in [2], where it was shown that the genus set, which is finite,
admits a natural abelian group structure with the isomorphism class of N as
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neutral element. It follows from these calculations that the genus group is cyclic
if the torsion subgroup of N is a p-group. In Section 1 of this paper we construct
the entire genus of a certain nilpotent group N, given by

(01) N:(x’y;xp"*k =1’yxy*1=xu>‘

Here p is a prime; n, k =1, u =1+ cp", with p * ¢; and we must exclude the
exceptional case p =2, k = 1. The genus set contains 1 element if p =2, n =1;
otherwise it contains
n—1 . 1
2

elements, and thus is non-trivial provided we exclude p =2, n =1;p =2, n =2;
p=3n=1
We realize the entire genus as No(= N), N,,..., N, ;; and, in the genus group,

N; =iN,.

However we do more, for we can construct an ‘“Escher staircase’” of normal
embeddings

0.2) Naﬁ_,Nl_)..._,Ni“’_f> = H&,NO

such that each quotient group is cyclic of order I, where [ is semi-primitive
modulo p” (that is, the smallest power g of I such that [* = = 1modp" is q = s).
Precisely,

N =(xy;x"" =1, yxy' = X,

where Im =1modp", and ¢: : N; — N, is given by ¢x = x, ¢y = y'.

In Section 2 we first realize our Escher staircase by a sequence
Mo, My, ..., M,_, of ZC-modules, where C is a cyclic infinite group, say C = (§).
As abelian groups each of the M; is Z/p"** = (a), but the module structure in M,
is given by

0.3) éa=u"a.

Following Cassidy [1] we may apply the notion of genus to a ZC-module. Then
the modules My, M, ..., M,_; are pairwise non-isomorphic but their localization
at any prime f, viewed as ZC,-modules, are isomorphic. Indeed, there is an
overlap between the examples described in [1] and the sets of modules M.
We then realize the modules M, by nilpotent spaces X, where 7 X, = C,
X, = Z/p"™*, and the action of m, on m, is precisely given by (0.3). Further the
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spaces X, 0 =i =s — 1, are all in the same genus, but no two are homotopically
equivalent; moreover, we have an “Escher staircase” of regular [-sheeted
coverings

0.4) X X X s X o> X5 X

In Section 3 we discuss the exceptional case p =2, k = 1; and in Section 4 we
modify our construction of the covering maps f; : X; — X, to produce examples
of finite-sheeted regular self-coverings of manifolds (which are not homotopic to
a homeomorphism). We have been encouraged to examine this question by a
(private) communication from Bill Goldman, in which he pointed out a
connection with the study of expanding self-maps of smooth manifolds (which
must therefore, by a theorem of Gromov, be infra-nilmanifolds).

We have also benefited greatly from a correspondence with Frank Adams, and
conversations with Graham Higman and Craig Squier.

1. A cyclic genus

Let p be a prime, let n,k =1, and let u = 1 + cp*, where p * c. If we exclude
the case p =2, k =1, we may prove

LEMMA 1.1. The order of u modulo p"** is p".

ProoF. We have

(1+cpy” =1+§=:l <€ )c'p"'.

Now if r =ap®, 0=s =n, then

() (et (7))

It follows that p" ****" is the highest power of p dividing ¢")c'p"; but

n-s

p

k(ap* —1)=s, sincek=1, az=1, p'=1+s,

so that

and hence

(1.1) (1+cp*yY" =1modp™*
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It thus remains to show that (1+cp*“Y" " # 1 mod p"**. As above, we have
pn-1 n-1

1.2) (I+cp* Y " =14+cp™™* "+ D (1; )c'p‘“,
r=2

and, if r=ap’, 0=s=n—1, then

) e (1),

We claim that this implies that

n-1
pn+k ’(Pr )Crpkr, r;z

For we must show that n —1—s + kap* = n + k or that k(ap* —1)= s +1. We
claim that this is true, noting (i) that, if s =0, then a =2 and (ii) that we have
excluded p =2, k =1, in which case the inequality would be false for s =1,
a = 1. It then follows that

(I+cp*yY '=1+cp"™* "'#1modp"™*

and the lemma is proved.
We write u =1+ cp* and consider the group

N=(xy;x""" =1,yxy " = x").
PropOSITION 1.2. The group N is nilpotent with finite commutator subgroup.

ProOF. Let the cyclic group C,» act on Z/p"** by £a = ua, where ¢ generates
C,~. By Lemma 1.1 this action is well-defined; it is necessarily a nilpotent action.
If we let C act on Z/p"** via the projection C-» C,», then C also acts
nilpotently. Then the group N is the semidirect product of Z/p"** and C for this
action, and hence itself nilpotent. Since [N, N]=(x""), it is obviously finite.

ReEMARK. If we index the lower central series by I'y= N, I'i,; =[N, I'N], and
define the nilpotency class ¢ to be the smallest i such that I'; = {1}, then the
nilpotency class of N is the smallest integer j such that j =n/k +1.

Let us recall that we always exclude the case p =2, k =1. We now also
exclude p =2, n =1, when the genus of N will be trivial. We may then prove

THEOREM 1.3. The group of the genus of N is a cyclic group of order
p(p-1)2.

PrOOF. We refer to Theorem 1.4 of [2]. We first analyse the center ZN of N.
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Now every element of N is expressible as x™y'; and if [w, z] = wzw ™'z, then
[y, x]=x*" [x™y' y]=x""" Thus

k

x"y'€ZN & p" ™ |u' =1, p™** | mp~.

But, by Lemma 1.1,

prlu' -1 pt|lL

We conclude that x™y' € ZN = p" |1, p" | m so that
ZN =(x"",y"").

Then the order of the torsion subgroup of ZN = p* so that (see [2]) the free
center of N is given by

FZN ={z €ZN;z = w",w € ZN}=(y*"™).
Now if QN = N/FZN, then the exponent of ON,, is p"**. For
ON,, =({x%,7;p""%x =0,p""*y =0,cp“% =0)
=(%,y;pt=0,p""™y =0).

We look at the semi-group of p-automorphisms of N. Let a :N— N be a
p-automorphism. We then have a map of exact sequences

Cpn+k>—)N—»C
A
Corrx=>N->»>C

and B is an automorphism, while y is a p-automorphism. If C =(¢), let
y(€)=¢&™. Then

a(y)=x%", for some q.
It follows that
a(y” ™ )=xy™"",  forsomer.

But since @ maps FZN to FZN, we must have

a(y” )=y
so that det a = m.

We now show that m may take precisely the values =1modp”. For the
constraint on m is precisely that y™xy ™ = yxy ', i.e., that u™ = u mod p"*~.



6 P. HILTON Isr. J. Math.

But, by Lemma 1.1, this is equivalent to m =1 mod p". Of course, for such m, a
is a p-automorphism. Thus by Theorem 1.4 of [2] the image of 6:
p—Aut N—(Z/p"**)*/{ £ 1} consists of the units of Z/p"**, mod {+ 1}, which
are =1modp". Plainly there are p“ such units so that the image of 6 is a
subgroup of order p*. Now (Z/p"**)*/{=1} is a cyclic group of order
p"**'(p — 1)/2, so that the quotient group, G(N), is cyclic of order p"~'(p — 1)/2.

It remains to find a generator of the group G(N), given that we assign to N
the role of the neutral element. Since (Z/p")*/{ 1} is cyclic, we may find a
generator I Thus | may be regarded as a positive integer and the smallest
exponent s such that I°= *1modp" is s = p"~'(p — 1)/2. Here we ignore the
trivial cases p =2, n=1;p=2, n =2; p=3, n =1, when G(N) is the trivial
group.

Now let Im =1modp" and let N, be the group given by

1.3) Ni={x,y;x"" =1, yxy™ = x*").

We consider the homomorphism ¢ : N — N, given by ¢x = x, ¢y =y’ Then ¢
gives rise, by restriction, to ¢r : FZN — FZM with det ¢ = [ and the induced
map of quotient groups QN — QN is an isomorphism. Thus (see Proposition 1.3
in [2] or the original definition in [4]) & : (Z/p"**)*/{ = 1}-> G (N) maps the class
of I to N,. Since ! generates (Z/p"**)*{ = 1} module image 6, it follows that N,
generates the group of the genus.

Of course more is true. Let us define N,0=i=s -1, where s =p"~ 1(p -1)/2,
by

1.4 No=(xy;x*" =1, yxy™" = x*").
y y

Then ¢ : N, > Ny, 0=i =5 -1 (N, = Ny), given by ¢ix = x, ¢y = y', embeds
each N; as a normal subgroup of N, with quotient C, and, in the additive group
G(N), which is cyclic of order s,

(1.5) N, =iN;, 0=i=s-1 (N,=N).
The identification (1.5) has the following remarkable consequence.

THEOREM 1.4. Let N, be defined by (1.4) and let (iy, iz,. .., i), (i, j2, - - -5 i) be
t-tuples of integers, in the range [0, s — 1] such that 2., -, in = 2., jnmod s where
s=p"'(p—1)/2. Then

[

.11 N., nI—=I1 N,

Proor. This is an immediate application of Theorem 3.2 of [2].
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We now involve another result from [2]. We know from Corollary 2.2 of that
paper that there exists, for any i, k, an I-equivalence ¢ :N,— Ni. Let
¢ :N,— N, be given by ¢x = x, ¢y =y" ', where k —j is computed modulo s.
Then Theorem 2.8 of [2] implies

THEOREM 1.5. For any I-equivalence ¢ :N,— N,, the pull-back of
Yy:N.—> N.and ¢ :N;— N, is N, where k +t =i+ jmods.

Similarly, we have

THEOREM 1.6. For any l-equivalence ¢ : N, — N, the push-out of ¢ : N;— N,
and ¢ : N,—> N, is N, where j +t =i+ k mods.

2. Realizing the genus of N
Let the group C = (&) act on the abelian group Z/p"** by
2.1 éa=u"a, 0=i=s-1

where the integers m, s have the same meaning as in Section 1. Then the
semidirect product of Z/p"** and C, for this action, is precisely the group N.. Let
us write A; for the C-module described above. Then plainly the modules
Ao, Ay, ..., A, are pairwise non-isomorphic, but all are in the same genus
(compare [1]).

Our objective in this section is to realize the modules A; as homotopy groups
of nilpotent polyhedra. Thus we will construct nilpotent polyhedra
X6, Xi,. .., X,y and l-sheeted regular covering maps

2.2) X(,L) X.—f‘—> .. -—>XS,.—f’;'—>Xo

such that (i) m X = C = (&); (ii) m,X; = Z/p""*; (iii) 7 Xi acts on 7, X; by (2.1);
(iv) fi induces an injection of 7, X; in 7 X.., with quotient cyclic of order [ ; (v)
all X; are in the same genus; (vi) no two of Xo, X, ..., X,_, are homotopically
equivalent.

We begin with a construction of greater generality and then specialize to
achieve our objective. Let M be a connected polyhedron with 7, M cyclic of
order ko. Then H*(M; Z) contains the summand Ext (Z/ko, Z) = Z/k,. Let g be a
generator of this group. We may represent g by a map, which we also designate
g from M to K(Z,2). We use g to induce a principal circle-bundle X over M.
Thus we have the sequence of maps

(2.3) §'—s X —>M—5K(Z,2).
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Now (2.3) induces, in 1-dimensional homology, the short exact sequence
24 Z— H,X > Z/k,.

This extension represents the element g € Ext(Z/ko, Z). If we apply m to (2.3)
we obtain the central extension’

(25) C—»>mX~» Ckﬁ.

Then 7, X must be abelian, so that (2.4) and (2.5) effectively coincide. Moreover,
since g generates Ext(Z/ko,Z), we know that H, X = Z, whence m X = C; and
the embedding C > X of (2.5) maps the generator to the koth power of the
generator.

Now let I be prime to ko; we may regard [ as a map K(Z,2)— K(Z,2) and thus
obtain the diagram

S'— > X ——>M-—L5K(Z,2)

29) A

s X, —sM -2 K(Z,2)

We establish the following properties of diagram (2.6).

ProrosiTION 2.1. The map f: X — X, is (homotopically) a regular covering
map; indeed f.m X is normal in m X, with quotient C..

PROOF. Since g represents an element of Ext(H:M,Z) it follows that
g+=0:H,M—Z, so that g,=0:mM—Z. It thus follows easily that
hye:mX=mM, i =2; likewise hyy: mX,=mM, i =2, so that f,: mX =mX,,
i = 2. Moreover, applying 7, to (2.6), we get the map of central extensions

C>""%C ——=> G,

@7 ll lf* ”

C >——>171X1——» Cko

Since ! is prime to ko, it is plain that m X, = C and we may write f, = I. This
completes the proof.

ProOPOSITION 2.2. If M is nilpotent, so are X, X,; and X, X, are in the same
genus.

* We use multiplicative notation (and, therefore, C, C,,....) for the fundamental group, even
plica ko group
where it is commutative.
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Proor. Since 7, X acts on X, i =2, through the action of m/M on w.M, it
follows that the action is nilpotent. Since, further, 7,.X is commutative, it follows
that X is nilpotent. Similarly, X, is nilpotent.

Let g be a prime. Then q is prime to ko or to L If g is prime to ko, then g, =0,
so that X, = (M x S"), ; and, likewise, X, = (M x S'),. If q is prime to [, then [,
is invertible, so that f, : X, = X,,. Thus X, X, are in the same genus.

We claim that X, X, are not, in general, of the same homotopy type. To
establish this, we specialize our construction. Let ko= p", n = 1. We assume that
mM=Z/p""*, k 21, where we exclude the case p=2, k=1, and that
mM = () acts on m,M by na = ua, where u =1+ cp’, p * c. This is valid by
Lemma 1.1. Choose a generator ¢ of m X mapping onto 1. Then 7,X acts on
7:X by £a = ua. Now choose I prime to p and let m be such that Im = I mod p”.
We construct diagram (2.6) and it follows that if f,& = &\, where &, generates
m X, then £la = ua, so that

(2.8) &a = ua, &a=u"a.

It follows that X, X, will have different homotopy types unless either
pn+klum___u Orpn+k

! u ™ —u. Lemma 1.1 ensures that this can only happen if

m = *1modp" or, equivalently, I = * 1mod p". Thus we infer

TaeOREM 2.3. If mM = C,r, m-M = Z/p"**, where we exclude the case p =2,
k =1, and if m M = (n) acts on m:M by na = ua, where u =1+ cp*, p *c, then
in (2.6), X and X, have different homotopy types provided that I# * 1 mod p".

Notice that such an [ may be found, provided that we further exclude p =2,
n=1;,p=2 n=2; p=3, n=1. Indeed, of course, we may go further. If we
choose [, as in Section 1, to represent a generator of (Z/p")*/{+1}, then
f: X — X, in (2.6) is precisely the map fo: Xo— X, we seek in (2.2); and we
obtain the entire cycle (2.2) by repeatedly using { : K(Z,2)~> K(Z.2) as in (2.6).
Thus the “general term” is

h lig

s’ X MM K(Z.2)
2.9) E | |
S’ X — M 5L K(Z,2)

where mM = Gy~ acting on m:M =Z/p"™* by na = ua, u =1+ cp*, p } c. Then
the C-module m.X; is just A, and the semidirect product of Z/p"** and C for
this action is precisely the group N, of Section 1.
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3. The exceptional case

Lemma 1.1 fails for the case p =2, k = 1. For example, if u = 7 then the order
of u mod 2’ is 2, not 2°. To state a corresponding lemma for this exceptional case,
let us consider positive integers u of the form 1+ 2¢, with ¢ odd — in other
words, integers which are congruent to 3mod 4. For such an integer u there is a
unique m such that

(3.1) u=2"-1mod2™",

and m = 2. (If we write u in base 2, then m is the number of 1’s we get, starting
on the right, before meeting the first 0.)
We may then prove

LEMMA 3.1.  The order of u modulo 2"*' is 2"*'"™, provided n = m.

Proor. Throughout this argument, v will stand for an arbitrary variable
integer. Thus, (3.1) says that

u=2"-1+02""
Squaring, we get
u'=1-2""+92""  sincemz=2.
It is now easy to prove, inductively, that
(3.2) u’ =1=-2"" 402" provided r = 1.

Then (3.2) implies that the order of umod2™"" is 2', provided’ r =1, which is
equivalent to the statement of the lemma.

We may view this result in a slightly different light. Let u =1+ ¢2*, ¢ odd,
k = 2. Then Lemma 1.1 tells us that the order of u modulo2"** is 2". Lemma 3.1
implies that, though we must exclude p =2, k =1 from consideration, we may,
by way of compensation, allow u = — 1+ ¢2* ¢ odd, k =2, when p =2, and still
conclude that the order of u modulo2"** is 2".

4. Self-covering manifolds

The general construction of Section 2 plainly permits us to describe a family of
polyhedra X admitting non-trivial self-covering maps f : X — X. (Of course, our

' The case r = ] again requires the obscrvation that m = 2.
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object in Section 2 was very different, namely, to obtain coverings f: X — X
where X, was not homotopy-equivalent to X.) Recall that we chose a positive
integer ko and a connected polyhedron M with mM = C,; and we then
constructed a principal $'-bundle

S X—>M—-L5K(@.2).

Let us now choose [ so that I = *1mod k,, to obtain the diagram (as a special
case of (2.6))

h

S X M—L5K(Z,2)
@1 [ |
s' X, — s M55 K(Z.,2)

We now observe that X = X,. If | = 1 mod k,, this is obvious, since then Ig = g.
But if I = — 1 mod k, it is also true that X = X, since if / = —1in (3.1), then [ is
a homotopy equivalence and so therefore is f. We have proved

THEOREM 4.1. Ifl= *1mod ko, then the map f of (4.1) is (homotopically) a
regular l-sheeted covering map.

Note that we may take X to be a manifold, provided M is a manifold. Thus an
example of this construction is obtained by taking M = RP?, so that k, = 2. The
manifold X will then be a circle bundle over RP?. Then, for any odd positive
integer I, we obtain a regular [-sheeted covering map f: X - X.

Now the construction given in Theorem 4.1 is based on the fact that the fiber
S' admits “expanding” maps. We close by giving an example where the space X
admitting such non-trivial self-coverings is regarded as a fiber space over the
base S' and we exploit the expanding maps of the base.

Our example is the Klein bottle. This is, apart from the trivial example of the
torus, the only possible closed surface that can admit finite-sheeted self-
coverings; for it is plain that if a compact polyhedron admits such self-coverings
its Euler characteristic must be zero.

Since the Klein bottle K is an Eilenberg-MacLane space K(G, 1), it is obvious
that K admits self-coverings if and only if G has subgroups isomorphic to itself.
Now the group G (the fundamental group of K) admits the presentation

G=(xy;yxy '=x7").
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If we change to the generators a,b where a =xy, b=y, we obtain the
presentation

(4.2) G =(a,b;a’=b".
The following theorem will imply that G admits subgroups — in fact, normal
subgroups — isomorphic to itself.

THEOREM 4.2. Let G ={a,b;a* =b"), let | be prime to k, and let H =
(a',b'). Then (i) H< G with G/H = C; (ii)) H=G.

Proor. (i) It suffices, first, to show that b™'a'b € H. For then, by symmetry,
a'b'a € H and so H <1 G. Now 3 integers u, v with uk + vl =1. Then, noting
that a* (= b*) is in the center of G,

b—lafb — b—ukb"vlalbulbuk — b*vlalbuf EH

Now G/H =(a,b;a“ =b*a' =1,b' =1). Since a* = b*,a' = b', it follows that
a = b, so that G/H (a: d'— )

(ii) Write ¢ = a* =b". the elements of G have the normal form
4.3) cla"bo--a~b, O=r, s; =k —1, only r, s, may be zero.

Write A = a', B =b', C = ¢'. Then certainly every element of H may be written
in the form
44y C*A"B*---A"B*™ 0=r, s;=k~—1, onlyr,s. may be zero,

and the theorem is proved if we can show that such an expression (4.4) is unique.

Now suppose 0=r=k—1 and let i=mk+r', 0=r' =k —1; likewise,
suppose 0=r=k—landletfl =mk +7',0=7' =k ~1. Weclaimthatr =7 &
r'=F. Obviously r=F = r'=F"; but, conversely, if r'=F', then (r—7)l =
(m —m)k, so that k |(r— NIk I(r— F), r =r. From this observation it im-
mediately follows from the uniqueness of (4.3) that if

CA"B--- A"B*% = CéAF,Bs‘l . ‘AF'iBf",

both sets of exponents subject to the canonical restrictions, then n =n, r. = r,
s; = §. Thus C* = C", so that q = §, and the theorem is proved.

That we cannot expect, in this way, to get examples (as in Section 1) of
mutually covering, non-isomorphic groups, is suggested by the following
Theorem.

THEOREM 4.3. Let G =(a,b;a* = b*), let m, n be prime to k, and let
={(a™ b"). Then H=H =(a',b'), where | = gcd (m, n).
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PrROOF. We first show that H <t G. As in Theorem 4.2 it suffices to show that
b~'a™b € H, and this follows because n is prime to k. Now H C H, so we have
the commutative diagram

H>G-»G/H

L]

H» G—-» G/H
and it suffices to show that the cardinality of G/H satisfies
4.5 |G/H|=1

Now G/H =(a,b;a* =b*a" =1,b" =1). If uk +vn =1, then b = b** = 3,
so that G/H is cyclic, generated by @, and the order of G/H is thus a divisor of

m. Similarly the order of G/H is a divisor of n, so that it is a divisor of [, and (4.5)
is proved.
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