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ABSTRACT 

The notion of genus, applied to finitely generated nilpotent groups or to 
nilpotent spaces of finite type, was introduced by Mislin; he and the author 
showed how to introduce the structure of a finite abelian group into the genus if 
the group N has finite commutator subgroup. An example is given of a 
complete genus No, NI . . . . .  N~_. which constitute a cyclic group generated by 
N~, with the additional property that each N~ embeds in its successor as a 
normal subgroup with quotient cyclic of order 1 ; of course, N~_~ embeds in No. 
The construction leads to the description of a family of nilpotent spaces 
X0, XI . . . . .  X._ .  all in the same genus, no two of the same homotopy type, such 
that each X, covers its successor as a cyclic /-sheeted regular covering; of 
course, X~ ~ covers Xo. Here p is a prime, n => 1, and s = p"-~(p - I)/2, while l 
is semiprimitive module p". 

O. Introduction 

The notion of genus, applied to finitely generated nilpotent groups or to 
nilpotent spaces of finite type, was introduced by Mislin (see [4, 3]). Thus two 
finitely generated nilpotent groups N and M belong to the same genus if and 
only if, for each prime p, the localizations Np and Mp are isomorphic; and a 
similar definition holds for nilpotent spaces of finite type. Strictly speaking, the 
genus should be regarded as consisting of isomorphism classes of groups or 
homotopy types of spaces. The detailed definitions may be found in [3]. 

In [4], Mislin showed how to calculate the order of the genus set of a nilpotent 
group N in the case that N has finite commutator subgroup, and this work was 
further developed in [2], where it was shown that the genus set, which is finite, 
admits a natural abelian group structure with the isomorphism class of N as 
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neutral element. It follows from these calculations that the genus group is cyclic 

if the torsion subgroup of N is a p-group. In Section 1 of this paper we construct 

the entire genus of a certain nilpotent group N, given by 

(0.1) N = ( x , y ; x  p~*k = 1,yxy l = x ~ ) .  

Here  p is a prime; n, k = l , u  l + c p  k, with p ,~ c ; and we must  exclude the 

exceptional case p = 2, k = 1. The genus set contains 1 element if p = 2, n = 1; 

otherwise it contains 

S---- 
2 

elements, and thus is non-trivial provided we exclude p = 2, n = 1; p -- 2, n -- 2; 

p = 3 ,  n - - 1 .  

We realize the entire genus as No(-- N), NI . . . . .  N~ i; and, in the genus group, 

N~ = iN1. 

However  we do more, for we can construct an "Escher  staircase" of normal 

embeddings 

(0.2) No % ~ NI---* ~ N~ ~' '~'-' • "" ~ N , ÷ I - * . . . - ~ N ~ _ I  ,No 

such that each quotient group is cyclic of order l, where l is semi-primitive 

modulo pn (that is, the smallest power q of I such that I q = --- 1 m o d p "  is q = s). 

Precisely, 

i 

N~ = (x, y ; x pn*k = 1, yxy -1 = x ~'), 

where lm -= 1 modp",  and ~b~ : N, ~ N~÷~ is given by ~b,x = x, ~b,y = y~. 

In Section 2 we first realize our Escher staircase by a sequence 

Mo, M~, . . . ,  M~-I of ZC-modules,  where C is a cyclic infinite group, say C = (~¢). 

As abelian groups each of the Mi is Z/p  "÷~ = (a),  but the module structure in Mi 

is given by 

(0.3) sea " '  = U  a .  

Following Cassidy [1] we may apply the notion of genus to a ZC-module.  Then 

the modules Mo, M~ . . . .  , M~-z are pairwise non-isomorphic but their localization 

at any prime t, viewed as ZC, -modules ,  are isomorphic. Indeed, there is an 

overlap between the examples described in [1] and the sets of modules M~. 

We then realize the modules M, by nilpotent spaces X,, where 7rlX~ = C, 

¢r2X~ = Z/p  ~÷k, and the action of 7r~ on zr2 is precisely given by (0.3). Further the 
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spaces X, 0 -_< i -<_ s - 1, are all in the same genus, but no two are homotopically 

equivalent; moreover, we have an "Escher staircase" of regular /-sheeted 

coverings 

(0.4) g o  ro ) Xi+l........~........~ X s _  I fs-i 

In Section 3 we discuss the exceptional case p = 2, k = 1; and in Section 4 we 

modify our construction of the covering maps ~ : X~ ---> X~÷~ to produce examples 

of finite-sheeted regular self-coverings of manifolds (which are not homotopic to 

a homeomorphism). We have been encouraged to examine this question by a 

(private) communication from Bill Goldman, in which he pointed out a 

connection with the study of expanding self-maps of smooth manifolds (which 

must therefore, by a theorem of Gromov, be infra-nilmanifolds). 

We have also benefited greatly from a correspondence with Frank Adams, and 

conversations with Graham Higman and Craig Squier. 

1. A cyclic genus 

Let p be a prime, let n, k _-> 1, and let u = 1 + cp k, where p ,~ c. If we exclude 

the case p =2 ,  k = 1, we may prove 

LEMMA 1.1. The order of u modulo p,,+k is p". 

PROOF. We have 

crP 
r=l 

Now if r= a pS ,  0 = < s =  < n , t h e n  

It follows that p n-,+k,p, is the highest power of p dividing (, p~)c'p ~'', but 

k(apS-1)>=s,  since k _->l, a_->l, p '_ -> l+s ,  

so that 

and hence 

(1.1) (1 + c p k f  n - 1 modp  n÷k 
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It thus remains to show that (1 + cp k)p°-' # 1 mod p.+k. As above, we have 

(1.2) (1 + cp k) v°-' = 1 + cp "+k i + c p , 
r = 2  

and, if r = a p 2 , 0 _ - < s _ < - n - l ,  then 

P"-'-~ ] (Pr"- ' )  ( but p"-s ~/ ( P r " - ' ) ) "  

We claim that this implies that 

"+~ 1 , k, _-> 2.  p c p ,  r 

For we must show that n - 1 -  s + kap ~ >= n + k or that k ( a p  ~ - 1)_ >- s + 1. We 

claim that this is true, noting (i) that, if s = 0, then a => 2 and (ii) that we have 

excluded p = 2, k = 1, in which case the inequality would be false for s = 1, 

a = 1. It then follows that 

(1 + cpk)  v"-'=- 1 + cp"+k-' ~ 1 modp  "+k 

and the lemma is proved. 

We write u = 1 + cp k and consider the group 

N = ( x , y ; x  p"+k = 1, yxy -~ = x") .  

PROPOSITION 1.2. The group N is nilpotent with finite commutator  subgroup. 

PROOF. Let the cyclic group Cp- act on Z/p"+~ by sea = ua, where s ~ generates 

Cp-. By Lemma 1.1 this action is well-defined; it is necessarily a nilpotent action. 

If we let C act on Zip "+~ via the projection C ~ C p - ,  then C also acts 

nilpotently. Then the group N is the semidirect product of Z/p "+k and C for this 

action, and hence itself nilpotent. Since [N, N] = (xPk), it is obviously finite. 

REMARK. If we index the lower central series by F0 = N, F~+, = [N, FIN], and 

define the nilpotency class c to be the smallest i such that F, = {1}, then the 

nilpotency class of N is the smallest integer j such that j >= n l k  + 1. 

Let us recall that we always exclude the case p = 2, k = 1. We now also 

exclude p = 2, n = 1, when the genus of N will be trivial. We may then prove 

THEOREM 1.3. The group o f  the genus o f  N is a cyclic group o f  order 

p"- ' (p  - 1)/2. 

PROOF. We refer to Theorem 1.4 of [2]. We first analyse the center Z N  of N. 
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Now every element of N is expressible as x"y~;  and if [w, z] = w z w - ~ z  -~, then 

[x"y', x] = x ~'-~, [ x " y ' ,  y ]  = x . . . .  . T h u s  

xmy ' E Z N  ~ p,+k ] u'  - 1, p"+~ ]mp k. 

But, by Lemma 1.1, 

p " + k l u ' - l c z ~ p " l l .  

We conclude that x " y '  E Z N  ~ p" ( l, p" ] m so that 

Z N  = (xP", ye"). 

Then the order of the torsion subgroup of Z N  = pk so that (see [2]) the free 

center of N is given by 

F Z N  = {z E Z N ;  z = w e~, w E Z N }  = (yP"+~). 

Now if ON = N / F Z N ,  then the exponent  of ONob is p,+k. For 

O N ,  b = (£, ~ ; p" +ky, = O, p" +~ = O, cp k£ = O) 

= (£, ~; P k£ = O, p" +ky = 0). 

We look at the semi-group of p-automorphisms of N. Let  a:N- - -~  N be a 

p-automorphism. We then have a map of exact sequences 

Cp.+~ ~--~ N--~ C 

I" II" 
C p . . ~  N ~ C  

and /3 is an automorphism, while T is a p-automorphism. If C = (£), let 

Y(~:) = ~:". Then 

a (y) = x qy", for some q. 

It follows that 

a (y p"÷' ) = x ' y  "p"", for some r. 

But since a maps F Z N  to FZN,  we must have 

a ( y p  "+~) = y.,p"÷~, 

so that det a = m. 

We now show that m may take precisely the values ---1 modp" .  For the 

constraint on m is precisely that y m x y - "  = yxy -~, i.e., that u "  - u m o d p  "+~ 
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But, by Lemma 1.1, this is equivalent to m = 1 modp".  Of course, for such m, ot 

is a p-automorphism. Thus by Theorem 1.4 of [2] the image of 0 :  

p -  Aut N ~  (Z/p"+~)*/{  +-1} consists of the units of Z / p  "+k, rood{ -  1}, which 

are = l modp".  Plainly there are pk such units so that the image of 0 is a 

subgroup of order pk. Now (Z /p  "*k)*/{ +--1} is a cyclic group of order 

p,+~-l(p _ 1)/2, so that the quotient group, G ( N ) ,  is cyclic of order p"-l(p - 1)/2. 

It remains to find a generator of the group G ( N ) ,  given that we assign to N 

the role of the neutral element. Since ( Z / p " ) * / {  + - 1} is cyclic, we may find a 

generator I. Thus l may be regarded as a positive integer and the smallest 

exponent s such that ! s = -+ 1 mod p" is s = pn-~(p - 1)/2. Here we ignore the 

trivial cases p =2 ,  n = 1; p -- 2, n =2 ;  p =3 ,  n = 1, when G ( N )  is the trivial 

group. 

Now let lm  = 1 mod p" and let N~ be the group given by 

(1.3) Nj  = (x, y ; x p"÷~ = 1, y x y  -1 = x " ' ) .  

We consider the homomorphism ~b : N ~ N~ given by ~bx = x, ~by = y~. Then ~b 

gives rise, by restriction, to ~b~ : F Z N  ~ F Z M  with det ~b~ = l and the induced 

map of quotient groups Q N  ~ Q N I  is an isomorphism. Thus (see Proposition 1.3 

in [2] or the original definition in [4]) 8 : (Z /p"+~)*/{  +- 1}~  G ( N )  maps the class 

of l to N1. Since l generates (Z /p"+k)*{  + - 1} module image 0, it follows that N~ 

generates the group of the genus. 

Of course more is true. Let us define Ni, 0 =< i _--5 s - 1, where s = p"-~(p - 1)/2, 

by 

(1.4) Ni = (x, y ; x p"÷~ = 1, y x y  -1 = x"'~). 

Then ~ : N~ ~ N~+~, 0 < i < s - 1 (N, = No), given by ~b~x = x, ~by = y ~, embeds 

each N~ as a normal subgroup of N~+~ with quotient C~, and, in the additive group 

G ( N ) ,  which is cyclic of order s, 

(1.5) N~ = iN~, 0 < i < s - 1 (No = N ) .  

The identification (1.5) has the following remarkable consequence. 

THEOREM 1.4. LeI  N~ be de f ined  by (1.4) a n d  let (i~, i:, . . . , i,), (j~, j2 . . . .  , j , )  be 

t - tup les  o f  integers, in the range [0, s - 1] such  that  Z ' ,~I  i,, =- Y/,,=~ j,, mod s where  

s = p"-~(p - 1)/2. T h e n  

m ~ l  m = 1  

PROOF. This is an immediate application of Theorem 3.2 of [2]. 
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We now involve another result from [2]. We know from Corollary 2.2 of that 

paper that there exists, for any i, k, an /-equivalence qJ:N~--->Nk. Let 

49 : Nj ~ Nk be given by 49x = x, 49y = y~k ,, where k - j is computed modulo s. 

Then Theorem 2.8 of [2] implies 

THEOREM 1.5. For any l-equivalence tk : N~ ~ Nk, the pu l l -back  of  

dd : N~ ---~ Nk and 49 : Ni ---> Nk is IV,, where k + t =- i + ] m o d  s. 

Similarly, we have 

THEOREM 1.6. For any l-equivalence ~ : N i ~ N ,  the push-ou t  of  ~ : Nj ~ N~ 

and 49 : NI ~ Nk is 3I,, where j + t ==- i + k mod s. 

2. Realizing the genus of N 

Let the group C = (~:) act on the abelian group Z/p  "÷k by 

(2.1) sea = u re'a, 0 __6- i _-< s - 1 

where the integers m, s have the same meaning as in Section 1. Then the 

semidirect product of Z/p  "÷k and C, for this action, is precisely the group N,. Let 

us write A~ for the C-module described above. Then plainly the modules 

Ao, A1 . . . . .  A,_~ are pairwise non-isomorphic, but all are in the same genus 

(compare [1]). 
Our objective in this section is to realize the modules A~ as homotopy groups 

of nilpotent polyhedra. Thus we will construct nilpotent polyhedra 

X,, Xt . . . . .  X,_~ and /-sheeted regular covering maps 

(2.2) Xo r,, , X ,  r, ,-..----~X, , r._, >Xo 

such that (i) zr,X, = C = (so); (ii) 7r2X~ = Z/p  "+k ; (iii) ~r,X~ acts on 7r2X~ by (2.1); 

(iv) ~ induces an injection of ,'~lXi in zr~X~+t with quotient cyclic of order l ; (v) 

all X~ are in the same genus; (vi) no two of 3/o, X~ . . . . .  X,_~ are homotopically 

equivalent. 

We begin with a construction of greater generality and then specialize to 

achieve our objective. Let M be a connected polyhedron with "trtM cyclic of 

order ko. Then H Z ( M ;  Z)contains  the summand Ext (Z/ko, Z) = Z/ko. Let g be a 

generator of this group. We may represent g by a map, which we also designate 

g, from M to K(Z, 2). We use g to induce a principal circle-bundle X over M. 

Thus we have the sequence of maps 

(2.3) S 1 > X h , > M > K(Z, 2). 
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Now (2.3) induces, in 1-dimensional homology, the short exact sequence 

(2.4) Z ~ H , X  ~ Z/ko. 

This extension represents the element g U Ext (Z/ko, Z). If we apply ~'~ to (2.3) 

we obtain the central extension* 

(2.5) C,-~ IriX--~ C~. 

Then rrlX must be abelian, so that (2.4) and (2.5) effectively coincide. Moreover, 

since g generates Ext (Z/ko, Z), we know that H I X  = Z, whence rr~X = C; and 

the embedding C,--~ 7r~X of (2.5) maps the generator to the koth power of the 

generator. 
Now let I be prime to k0; we may regard I as a map K(Z, 2)--* K(Z,2)  and thus 

obtain the diagram 

(2.6) 

S l  

S I 

h g 
>X ~ M  . , K(Z,2)  

'X1 h' ">M t~ ~K(Z,2)  

We establish the following properties of diagram (2.6). 

PROPOSITION 2.1. The map [ : X ~ Xm is (homotopically ) a regular covering 

map; indeed [ ,1 r lX is normal in 7riX~ with quotient C~. 

PROOF. Since g represents an element of Ext(H1M, Z) it follows that 

g ,  =O: H2M ~ Z ,  so that g , = 0 : T r 2 M ~ Z .  It thus follows easily that 

h ,  : 7r~X ~ 7r~M, i => 2; likewise hi,  : ~r~X~ -~ ~r,M, i _-> 2, so that f ,  : ~r~X ~- 7r~X~, 

i >_- 2. Moreover, applying ~r~ to (2.6), we get the map of central extensions 

C - ~ ° ~  C ~ C ~ .  

(2.7) ~l l f ,  

C ~ > I r , X , ~  C~o 

Since l is prime to ko, it is plain that ~r,X, = C and we may write [ ,  = I. This 

completes the proof. 

PROPOSITION 2.2. If M is nilpotent, so are X, X,; and X, X,  are in the same 

genus. 

' We use multiplicative notation (and, therefore, (7, Ck0 . . . .  ) for the fundamental group, even 
where it is commutative. 
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PROOF. Since 7r,X acts on 7r, X, i _->2, through the action of 7r~M on rr, M, it 

follows that the action is nilpotent.  Since, further ,  ~ X  is commutat ive ,  it follows 

that X is nilpotent.  Similarly, X~ is nilpotent.  

Let  q be a prime. Then  q is prime to k0 or to I. If q is prime to ko, then gq -~ 0, 

so that Xq ~ (M × S~)q ; and, likewise, X~q -~ (M × S~)q. If q is prime to l, then Iq 

is invertible,  so that fq : Xq ~- X~q. Thus X, X~ are in the same genus. 

We claim that X, X~ are not, in general ,  of the same homotopy  type. To 

establish this, we specialize our  construct ion.  Let  ko = p", n ->_ 1. We assume that 

7r~,M=Z/p "+k, k ~ l ,  where  we exclude the case p = 2 ,  k = l ,  and that 

7r~M = (r/) acts on 7r_~M by rta = ua, where u = 1 + cp ~, p ~/c. This is valid by 

Lemma 1.1. Choose  a genera tor  ~: of ~r~X mapping onto  r/. Then  ~r~X acts on 

~-,,X by ~a = ua. Now choose l pr ime to p and let m be such that Im -= 1 mod p". 

We construct  diagram (2.6) and it follows that if f,~: = ~:'~, where ~:t generates  

7rtXt, then ~:'~a = ua, so that 

(2.8) sea = ua, ~,a = u ' a .  

It follows that X , X ,  will have different homotopy  types unless ei ther  

p,+k I u "  - u or p,+k I u-m - u. Lemma  1.1 ensures  that this can only happen if 

m ~ + 1 rood p" or, equivalently,  l -~ + 1 rood p". Thus we infer 

THEOREM 2.3. ff  7r~M = Cp-, 7r2M = Zip  "+k, where we exclude the case p = 2, 

k = 1, and ifTr~M = (rl) acts on 7r2M by rla = ua, where u = 1 + cp k, p ,~ c, then 

in (2.6), X and Xa have different homotopy types provided that l ~  + 1 m o d p " .  

Notice that  such an 1 may be found,  provided that we fur ther  exclude p = 2, 

n = 1; p = 2 ,  n = 2 ;  p = 3 ,  n = 1. Indeed,  of course,  we may go further.  If we 

choose 1, as in Section 1, to represent  a genera tor  of (Z/p")*/{  + 1}, then 

f : X - - ~  XI  in (2.6) is precisely the map f0: Xo--* X~ we seek in (2.2); and we 

obtain the entire cycle (2.2) by repeatedly  using l • K(Z,  2)--~ K(Z,  2) as in (2.6). 

Thus the "genera l  t e r m "  is 

S L ) X i  h t'g M " K(Z ,  2) 

(2.9) l '  ~t, t '  
li+tg 

S ~ ) X,+, h,+! ) M ) K(Z,  2) 

where  7riM = Ce~, acting on rrzM = Z/p  n-~k by r/a = ua, u = 1 + cp k, p ,~ c. Then  

the C-modu le  rr2Xi is just A,, and the semidirect  product  of Z/p  n+k and C for 

this action is precisely the group N, of Section 1. 
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3. The exceptional case 

L e m m a  1.1 fails for the case p = 2, k = 1. For  example,  if u = 7 then the order  

of u mod  2 3 is 2, not 2 2. To state a cor responding  lemma for this exceptional  case, 

let us consider  positive integers u of the form 1 + 2c, with c odd - -  in o ther  

words,  integers which are congruen t  to 3 rood 4. For  such an integer u there is a 

unique m such that 

(3.1) u =- 2" - 1 rood2  "*~, 

and m => 2. (If we write u in base 2, then m is the number  of l ' s  we get, start ing 

on the right, before meet ing the first 0.) 

We may then prove 

LEMMA 3.1. The  order o[  u m o d u l o  2 ~+~ is 2 "*~-", prov ided  n >-_ m. 

PROOF. Throughou t  this argument ,  v will stand for an arbitrary variable 

integer. Thus,  (3.1) says that 

u = 2 " - l + v 2  "÷~. 

Squaring,  we get 

m + 2  u -~ 1 _ 2 , - ÷ 1 + v 2  , sincere_>-2. 

It is now easy to prove,  inductively, that  

m + r + l  (3.2) u ~'' = 1 - 2 "+' + v2 , provided r _-__ 1. 

Then  (3.2) implies that the order  of u mod 2 "+r is 2', provided t r -> 1, which is 

equivalent  to the s ta tement  of the lemma. 

We may view this.result  in a slightly different light. Let  u = 1 + c2 ~, c odd,  

k >_- 2. Then  L e m m a  1.1 tells us that  the order  of u modulo  2 "÷k is 2 ". L e m m a  3.1 

implies that, though we must  exclude p = 2, k = I f rom considerat ion,  we may,  

by way of  compensa t ion ,  allow u = - 1 + c2 ~, c odd,  k => 2, when p = 2, and still 

conclude that  the order  of u m o d u l o 2  "+k is 2 n. 

4. Self-covering manifolds 

The general  construct ion of Section 2 plainly permits  us to describe a family of  

po lyhedra  X admit t ing non-trivial self-covering maps f : X ---> X. (Of course,  our  

The case r = 1 again requires the observation that m _-2. 
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object in Section 2 was very different, namely, to obtain coverings f :X---* X~ 

where X~ was not homotopy-equivalent  to X.) Recall that we chose a positive 

integer ko and a connected polyhedron M with 7r~M = C~,; and we then 

constructed a principal S J-bundle 

S' , X  h ~M g , K ( Z , 2 ) .  

Let us now choose l so that 1 =- + 1 mod ko, to obtain the diagram (as a special 

case of (2.6)) 

(4.1) 

SI ) X  h g M ' K(Z, 2) 

l' 1 1' 
S' ~ Xt h, Ig ~ M ~ K ( Z ,  2) 

We now observe that X = X~. If I - 1 mod ko, this is obvious, since then lg = g. 
But if 1 =- - 1 rood ko, it is also true that X -~ X,, since if l = - 1 in (3.1), then l is 

a homotopy equivalence and so therefore is f. We have proved 

THEOREM 4.1. Ill ~- -+ 1 mod k0, then the map f o r  (4.1) is (homotopically) a 
regular l-sheeted covering map. 

Note that we may take X to be a manifold, provided M is a manifold. Thus an 

example of this construction is obtained by taking M = RP 2, so that ko = 2. The 

manifold X will then be a circle bundle o v e r  R P  2. Then, for any odd positive 

integer l, we obtain a regular /-sheeted covering map f : X - - *  X. 
Now the construction given in Theorem 4.1 is based on the fact that the fiber 

S 1 admits "expanding" maps. We close by giving an example where the space X 

admitting such non-trivial self-coverings is regarded as a fiber space over the 

base S 1 and we exploit the expanding maps of the base. 
Our example is the Klein bottle. This is, apart from the trivial example of the 

torus, the only possible closed surface that can admit finite-sheeted self- 

coverings; for it is plain that if a compact polyhedron admits such self-coverings 

its Euler characteristic must be zero. 

Since the Klein bottle K is an Ei lenberg-MacLane space K(G, 1), it is obvious 

that K admits self-coverings if and only if G has subgroups isomorphic to itself. 

Now the group G (the fundamental group of K) admits the presentation 

G = (x, y ; yxy-I ~- x - l ) .  
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If we change to the genera to rs  a , b  where  a - - x y ,  b = y, we obtain  the 

presen ta t ion  

(4.2) G = (a, b;  a 2 = b2). 

The  fol lowing t h e o r e m  will imply that  G admits  subgroups  - -  in fact, normal  

subgroups  - -  i somorphic  to itself. 

THEOREM 4.2. Let G = ( a , b ; a  k = b k ) ,  let l be prime to k, and let H =  

(at, bt). Then (i) H <~G with G / H = C ;  (ii) H ~ G .  

PROOF. (i) It suffices, first, to show that  b- 'a tb  E H. For  then, by symmet ry ,  

a-~bta E H and so H <1G. Now 3 integers u, v with uk + vl = 1. Then ,  noting 

that  ak (=  bk) is in the center  of G, 

b - l a  tb = b -"~b --aa tb ~lb ,k = b - ~ta tb ot E H. 

Now G / H  = (ti, b ;  tik = / ~ ,  ti t = 1,/~t = 1). Since d k = 6 ~, d '  =/~t, it follows that  

ti = / ~  so that  G / H  = (~i ; d ~ = 1). 

(ii) Wri te  c = ak = b~. Then  the e lements  of G have the normal  form 

(4.3) cqar~b~' • • • ar"bS", 0_-< ri, sj <_- k - 1, only r ,  s. may  be zero.  

Wri te  A = a t, B = b t, C = c ~. Then  certainly every  e l emen t  of H may  be wri t ten 

in the form 

(4.4) CqA "B ~'. • • A r-BS", 0 _-< ri, sj _--- k - 1, only rt, s, may  be zero,  

and the t heo rem is p roved  if we can show that  such an express ion (4.4) is unique.  

Now suppose  O < = r < = k - 1  and let r l = m k + r ' ,  0 < r ' _ - < k - 1 ;  likewise, 

suppose  0 -_< ~ _---k - 1 and let ?l = rhk + ~', 0 _-< ~' =< k - 1. We claim that  r = ? ¢:~ 

r ' =  ?'. Obvious ly  r = ? f f  r '  = f ' ;  but ,  conversely,  if r ' =  f ' ,  then ( r - ~ ) l  = 

( m -  ~ ) k ,  so that  k [ ( r - ~ ) l ,  k I ( r - ~ ) ,  r = f. F rom this observa t ion  it im- 

media te ly  follows f rom the uniqueness  of (4.3) that  if 

CqA "B  " ' . . .  A " B ' "  = C~A ~'B ~, . . .  A ~B ¢", 

both  sets of exponen ts  subjec t  to the canonical  restrictions, then n = ti, r~ = ~, 

si = ~. Thus  C q = C ~, so that q = ~, and the t heo rem is proved.  

Tha t  we canno t  expect ,  in this way, to get  examples  (as in Sect ion 1) of  

mutual ly  covering,  non- i somorph ic  groups,  is suggested by the fol lowing 

T h e o r e m .  

THEOREM 4.3. Let  G = ( a , b ; a  k = b k ) ,  let m, n be prime to k, and let 

ISI = (a ", b "). Then IY-I = H = (a l, b t), where I = gcd (m, n). 
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PROOF. We first show that IQ <~ G. As in Theorem 4.2 it suffices to show that 

b- la"b @/~, and this follows because n is prime to k. Now/-I  C_ H, so we have 

the commutative diagram 

I71~ G ~ G / fl 

1 1 
H'--~ G ~ G / H  

and it suffices to show that the cardinality of G/I2-I satisfies 

(4.5) I G / f l I  <= I. 

Now G/ffI = (&/~; tik =/~k tim = 1,/~" = 1). If uk + vn = 1, then /~ =/~uk = d"k, 

so that G/IEI is cyclic, generated by ti, and the order of G/ITt is thus a divisor of 

m. Similarly the order of G / / t  is a divisor of n, so that it is a divisor of/ ,  and (4.5) 

is proved. 
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